行业动态

电厂影响脱硫效率的因素分析

2015-08-31 11:13:27 点击数:

1.吸收剂的pH值

烟气中SO2与吸收塔浆液接触后发生如下一些化学反应:

 

SO2+H2O→H++HSO3;HSO3-→H++SO32-

 

产生的H+促进了CaCO3的溶解,生成一定浓度的Ca2+

 

CaCO3+H+=HCO3-+Ca2+

 

Ca2+与SO32-或HSO3-结合,生成CaSO3和Ca(HSO3)2

 

Ca2++SO32-→CaSO3 ;Ca2++2HSO3-→Ca(HSO3)2

 

反应过程中,一部分SO32-和HSO3-被氧化成SO42-和HSO4-

 

SO32-+1/2O2→SO42-;HSO3-+1/2O2→HSO4-

 

最后吸收液中存在的大量SO32-和HSO3-,可以通过鼓入空气进行强制氧化转化为SO42-,最后生成石膏结晶:

 

Ca2++SO42-+2H2O→CaSO4·2H2O

 

脱硫反应的基础是溶液中H+的生成,只有H+的存在才促进了Ca2+的生成,因此,吸收速率主要取决于溶液的pH值。故湿法脱硫工艺的应用中控制合适的pH值和保持pH值的稳定是保证脱硫效率的关键。

pH值为6.0时,二氧化硫吸收效果最佳,但此时易发生结垢,堵塞现象。而低的pH值有利于亚硫酸钙的氧化,石灰石溶解度增加,但二氧化硫的吸收受到抑制,脱硫效率大幅度降低;当pH值为4.5时,二氧化硫的吸收几乎无法进行,且吸收液呈酸性,对设备也有腐蚀。调试某电厂新建机组脱硫系统发现浆液pH值在4.5~6.0之间较为妥当。

2.液气比及浆液循环量

液气比增大,表明气液接触机率增加,脱硫率增大。但二氧化硫与吸收液有一个气液平衡,液气比超过一定值后,脱硫率将不在增加。初始的石灰石浆液喷淋下来后与烟气接触,SO2等气体与石灰石浆液的反应并不完全,需要不断地循环反应,增加浆液的循环量,也就加大了CaCO3与SO2的接触反应机会,从而提高了脱硫效率。若吸收塔喷嘴或浆液循环泵入口堵塞、喷淋效果较差、浆液循环泵内部磨蚀严重等,使运行压力不足,均会导致脱硫效率下降。

3.烟气与吸收剂接触时间

烟气自GGH进入吸收塔后,自下而上流动,与喷淋而下的石灰石浆液雾滴接触反应,接触时间越长,反应越完全。

4.石灰石粒度及纯度

石灰石是目前湿法脱硫中最常用的吸收剂。石灰石颗粒越细,纯度越高,其表面积越大,反应越充分,吸收速率越快,石灰石的利用率越高。一般要求石灰石粉的90%能通过325目筛(44μm)或250目筛(63μm),并且CaCO3含量大于93%。

5.氧化空气量

O2参与烟气脱硫的化学过程,使HSO3-氧化为SO42-,随着烟气中O2含量的增加,CaSO4•2H2O的形成速度加快,脱硫率也呈上升趋势。保证氧化风机向吸收塔的供气量可提高脱硫率。

6.烟气中灰尘含量

影响吸收塔内水质的因素之一是烟气中尘埃含量大。由于脱硫过程中烟气中灰尘大量进入吸收塔内,与塔内浆液混合,阻碍了石灰石浆液对SO2的吸收,降低了石灰石中Ca2+的溶解速率,同时烟尘或溶液中不断溶出的一些重金属离子会抑制了Ca2+与HSO3-的反应。若烟气中粉尘含量持续超过设计允许量,将使脱硫率大为下降。同时成品石膏中也含有大量的灰尘及消耗的石灰石量也相应增加,影响石膏品质。

7.烟气温度

若进入吸收塔的烟气温度较高,烟气膨胀,流速和压力增大,会使脱硫效率下降;若进入吸收塔烟气温度越低,越利于SO2气体溶于浆液,形成HSO3-,即:低温有利于吸收,高温有利于解吸。通常,将烟气冷却到60℃左右有利于吸收SO2;烟气较高温度时,SO2的吸收效率降低。

8.煤质影响

由于煤质的不同,煤中所含的微量物质也不同,某些燃煤烟气中HCl、HF含量较高,由于吸收塔内浆液浓度在20%左右,HCl、HF就会溶解于浆液中而使F-、Cl-增加,从而影响石灰石浆液对SO2吸收,影响PH值的测量。

9.Cl-含量

Cl-对系统性能的影响是潜在的,在系统中主要以氯化钙形式存在,去除困难,影响脱硫效率,达到一定程度时才会显现,主要是干扰了离子间的反应。通常Cl-的设计上限为20000mg/L,实际上一般当Cl-高于12000mg/L时,就表现出对FGD运行的一些负面影响,如pH值的自控能力稍微减弱,副产物石膏中CaCO3含量略有增加等。浆液Cl-浓度高低与原烟气中HCl的含量直接相关,也与系统的废水排放量有关。

10.烟气流量变化

机组负荷增减时,进入吸收塔的烟气量随之变化。首先要保证增压风机的稳定运行,然后调节石灰石浆液的供浆量,以稳定浆液pH值;再适时改变有关设备的运行方式。一般开式喷淋塔的液气比控制在13~16L/m3。因此,可根据实际烟气量来决定增减循环泵的运行台数或切换循环泵,不同循环泵之间的优化组合运行方式需经过多次试验后才能确定。氧化空气的量一般为鼓入空气中的氧与SO2摩尔比为1.5左右,所以烟气量变化后也应改变氧化风机的供气量。

11.原烟气SO2浓度波动

燃煤硫分变动的情况经常发生,原烟气中SO2浓度并不稳定。SO2浓度的突然上升往往使吸收塔浆液pH值在短时间内下降,如果此时控制系统跟不上工况变化,就可能造成pH值无法恢复到正常值,降低脱硫效率,影响石膏品质。

12.烟气旁路档板密封不严渗漏

正常运行中,烟气旁路档板密封不严泄漏,使得少部分原烟气从旁路烟道通过,与经FGD处理的净烟气相混合,从而导致出口烟气中的SO2浓度超标,降低了脱硫效率。

13.仪表指示影响

在线检测系统(CEMS)传输信号不准,导致控制系统(或人为判断)出现问题,从而影响脱硫效率。因此,保证仪表的准确投运,对于提高脱硫效率尤为重要。

14.烟气中含油成分

当锅炉投油燃烧,来不及退出电除尘、脱硫系统,烟气中的油气进入吸收塔,导致浆液污染,甚至脱硫系统中毒瘫痪。因此,严格执行《电除尘、脱硫系统投退管理规定》也是确保脱硫系统安全稳定运行的重要方面。

15.设备故障引发脱硫效率下降

脱硫设备故障也会引发脱硫效率下降,所以必须加强脱硫设备日常维护。制浆系统出力不足、烟道膨胀节破裂、脱水系统故障、GGH堵塞、管道磨损、吸收塔墙壁磨穿等都可引发的脱硫效率降低甚致停运脱硫。因此要提高设备科学管理水平,加强检修维护的计划性、严格执行各项定期工作、提高设备管理人员实践经验,减少重复性缺陷的发生,从而大大提高整个脱硫系统的可靠性。

文章转发请保留链接 脱硫催化剂:www.ccsytl.com